

Welcome to MINE-Database’s Documentation!

Introduction

MINE-Database, also referred to as Pickaxe, is a python library allows you to efficiently create reaction networks based on a set of reaction rules.

Some common use cases:

	Predicting promiscuous enzymatic reactions in biological systems.

	Searching for potential novel reaction pathways from starting compound(s) to target compound(s).

	Annotating possible structures for unknown peaks in metabolomics datasets.

	Predicting spontaneous chemical reactions which may be diverting flux from a pathway of interest.

	Specifying custom reaction rules to extend reaction networks to include chemical reactions.

In all of these cases, you supply pickaxe with a set of starting compounds (as SMILES strings) and which set of reaction rules you would like to useand then Pickaxe does the rest.
Pickaxe creates a network expansion by applying these reaction rules iteratively to your starting set of compounds, going for as many generations as you specify.
There are many more advanced options and customizations you can add as well.

Getting Started

To get started, see Installation.

You can run pickaxe in two ways, in command-line mode (Running Pickaxe via Command Line) or using a template file (recommended) (Running Pickaxe).
Running Pickaxe also provides information about different compound filters you can apply to your pickaxe expansions.

For a list of inputs required for pickaxe, see Generating Pickaxe Inputs.

To learn how to create your own custom filters, see Custom Filters.

An API reference is provided at API Reference if you need to see implementation details.

Finally, if you find yourself needing help or have feedback for us, please see Support!

Contents

	1. Installation

	2. Running Pickaxe via Command Line
	2.1. Command Line Interface Features

	2.2. Examples

	3. Running Pickaxe
	3.1. Example Template

	3.2. Run Output

	3.3. Run Input

	3.4. Core Pickaxe Options

	3.5. Built-In Filters

	4. Generating Pickaxe Inputs
	4.1. Compound Inputs

	4.2. Reaction Operator Inputs

	5. Custom Filters
	5.1. Overview

	5.2. Requirements

	5.3. Writing Custom Filters

	5.4. Using Your Filter in a Pickaxe Run

	5.5. (Optional) Writing Tests for Your Filter

	6. Thermodynamic Calculations
	6.1. Overview of Thermodynamics Module

	6.2. Calculating Thermodynamics of a Pickaxe Run

	7. API Reference
	7.1. Compound I/O

	7.2. Databases

	7.3. Filters

	7.4. Metabolomics

	7.5. Pickaxe

	7.6. Reactions

	7.7. Rules

	7.8. Thermodynamics

	7.9. Utilities

	8. Support

1. Installation

Stuff here

2. Running Pickaxe via Command Line

Pickaxe supports running through a command line interface, but does not offer the
full functionality available through writing a python script pickaxe_run.rst.

2.1. Command Line Interface Features

$ python pickaxe.py -h
usage: pickaxe.py [-h] [-C COREACTANT_LIST] [-r RULE_LIST] [-c COMPOUND_FILE] [-v] [-H] [-k] [-n] [-m PROCESSES] [-g GENERATIONS] [-q] [-s SMILES] [-p PRUNING_WHITELIST] [-o OUTPUT_DIR] [-d DATABASE] [-u MONGO_URI] [-i IMAGE_DIR]

optional arguments:
-h, --help show this help message and exit
-C COREACTANT_LIST, --coreactant_list COREACTANT_LIST
 Specify a list of coreactants as a .tsv
-r RULE_LIST, --rule_list RULE_LIST
 Specify a list of reaction rules as a .tsv
-c COMPOUND_FILE, --compound_file COMPOUND_FILE
 Specify a list of starting compounds as .tsv or .csv
-v, --verbose Display RDKit errors & warnings
-H, --explicit_h Specify explicit hydrogen for use in reaction rules.
-k, --kekulize Specify whether to kekulize compounds.
-n, --neutralise Specify whether to neturalise compounds.
-m PROCESSES, --processes PROCESSES
 Set the max number of processes.
-g GENERATIONS, --generations GENERATIONS
 Set the numbers of time to apply the reaction rules to the compound set.
-q, --quiet Silence warnings about imbalanced reactions
-s SMILES, --smiles SMILES
 Specify a starting compound SMILES.
-p PRUNING_WHITELIST, --pruning_whitelist PRUNING_WHITELIST
 Specify a list of target compounds to prune reaction network down to.
-o OUTPUT_DIR, --output_dir OUTPUT_DIR
 The directory in which to write files.
-d DATABASE, --database DATABASE
 The name of the database to store results.
-u MONGO_URI, --mongo_uri MONGO_URI
 The URI of the mongo database to connect to. Defaults to mongodb://localhost:27017
-i IMAGE_DIR, --image_dir IMAGE_DIR
 Specify a directory to store images of all created compounds

2.2. Examples

2.2.1. Generate and Save Data to Local directory

This is the simplest example of using the command line interface. It accepts coreactant, rule, and compound files and expands
to generations before saving the results in .tsv files in a provided directory.

python pickaxe.py -r /path/to/rules.tsv -C path/to/coreactants.tsv -c /path/to/compounds.tsv -g 2 -o /path/to/output/

2.2.2. Generate and Save Data to a Mongo Database

It is possible to save to a mongo database, either locally or remotely. This option works with writing a .tsv as well, and will
write to both locations.

Local Mongo Server
Running the following will use, by default, mongodb://localhost:27017 as the mongo URI.

python pickaxe.py -r /path/to/rules.tsv -C path/to/coreactants.tsv -c /path/to/compounds.tsv -g 2 -d database_name

Specific Mongo Server
Alternatively, a [specific Mongo URI can be specified](https://docs.mongodb.com/manual/reference/connection-string/),
allowing for the use of password protected databases and remote databases.

python pickaxe.py -r /path/to/rules.tsv -C path/to/coreactants.tsv -c /path/to/compounds.tsv -g 2 -d database_name -u mongodb://myDBReader:D1fficultP%40ssw0rd@mongodb0.example.com:27017/?authSource=admin

2.2.3. Generate with Multiple Processes and Pruning Final Network

This example uses 4 processes to run and prunes the final network to contain only compounds
that are specified and any compounds required to generate them from the starting compounds.

python pickaxe.py -r /path/to/rules.tsv -C path/to/coreactants.tsv -c /path/to/compounds.tsv -g 2 -o /path/to/output/ -m 4 -p /path/to/pruning_targets.tsv

3. Running Pickaxe

Pickaxe is the program that is used to generate the data that is stored in the MINE-Database. The database is used for
metabolomics applications, but pickaxe can be extended for use in general reaction network generation and analysis. An
example run, pickaxe_run.py, is found in the github. This python script provides a template for producing pickaxe runs,
exposing the key parameters for a user to modify and inputs these into the pickaxe class to run, greatly simplifying the
process.

pickaxe_run.py highlights the key components for a pickaxe run block-by-block. This document also serves to highlight
and explain the components of running pickaxe. Generally, pickaxe_run.py operates in the following steps:

	Specify where the output of the run will be stored

	Specifying the various run inputs

	Core Pickaxe options

	Specification of Filters

This document gives the relevant code snippets from a template and expands on existing comments. Additionally, brief
examples of relevant inputs will be created. For more detailed descriptions please see Generating Pickaxe Inputs and Filters.

Tip

To create custom filters, see Custom Filters.

3.1. Example Template

This document details the specifics of a template file, pickaxe_run.py, that highlights
common Pickaxe runs.

pickaxe_run.py can be downloaded here.

3.2. Run Output

There are two ways to output data:

	Writing to a mongo database that is specified by a mongo uri [https://docs.mongodb.com/manual/reference/connection-string/], either local or in mongo_uri.csv

	Local .tsv files

Whether or not to write to a mongodb
write_db = False
database_overwrite = False
database = "APAH_100Sam_50rule"
database = "example_pathway"
Message to insert into metadata
message = ("Example run to show how pickaxe is run.")

mongo DB information
use_local = False
if write_db == False:
 mongo_uri = None
elif use_local:
 mongo_uri = 'mongodb://localhost:27017'
else:
 mongo_uri = open('mongo_uri1.csv').readline().strip('\n')

Write output .csv files locally
write_to_csv = False
output_dir = '.'

3.3. Run Input

There are three key inputs for a Pickaxe run to be specified:

	input_cpds specifying the compounds to be reacted

	coreactant_list are coreactants that are required for the reaction rules

	rule_list that specifies the reaction rules to be applied

3.3.1. Input Compounds Example

The file specified for input_cpds must be a .tsv or a .csv format.
The file consists of an id and a SMILES string. An example of a .csv file is

id,SMILES
0,CC(=O)OC
1,CCO

3.3.2. Coreactant and Rule lists

Pickaxe is provided with a default rule list generated from approximately 70,000 MetaCyc reactions.

The following code allows you to select then number of rules by either a number or by coverage:

from minedatabase.rules import metacyc_generalized
Select by number
rule_list, coreactant_list, rule_name = metacyc_generalized(n_rules=20)

Select by fraction coverage
rule_list, coreactant_list, rule_name = metacyc_generalized(fraction_coverage=0.5)

When choosing how many reactions to use, you can refer to the following table:

	Number of Rules

	Percent Coverage of
MetaCyc Reactions

	20

	50

	84

	75

	100

	78

	272

	90

	500

	95

	956

	99

	1221

	100

Note

Rules and coreactants can be generated manually as well, which is outlined in
Generating Pickaxe Inputs.

3.3.3. Code snippet from Pickaxe_run.py

These input files are specified as follows:

input_cpds = './example_data/starting_cpds_single.csv'

Generate rules automatically from metacyc generalized. n_rules takes precedence over
fraction_coverage if both specified. Passing nothing returns all rules.
rule_list, coreactant_list, rule_name = metacyc_generalized(
 n_rules=20,
 fraction_coverage=None
)

If you generated a file manually then specify the file directly as follows:

rule_list = "path/to/rules"
coreactant_list = "path/to/coreactants"
rule_name = "rule name"

3.4. Core Pickaxe Options

Of these options the majority of uses will only require the changing of the following:

	generations is the number of generations to expand, e.g. 2 generations will apply reaction rules twice

	num_works specifies the number of processors to use

However, the remaining can be changed if needed:

	verbose specifies if RDKit is suppressed or not

	kekulize specifies whether or not to kekulize RDKit molecules

	neutralise specifies whether or not to neutralise molecules

	image_dir specifies the directory where to draw images of generated compounds

	quiet specifies whether or not to suppress output

	indexing specifies whether or not to index the databases

generations = 1
processes = 4 # Number of processes for parallelization
verbose = False # Display RDKit warnings and errors
explicit_h = False
kekulize = True
neutralise = True
image_dir = None
quiet = True
indexing = False

3.5. Built-In Filters

Three general filters are supplied with Pickaxe:

	A tanimoto threshold filters

	A tanimoto sampling filters

	A metabolomics filters

Specified filters are applied before each generation (and at the end of the run if specified) to reduce the number of compounds
to be expanded. This allows for the removal of compounds that aren’t of interest to reduce the number of non-useful compounds in the resultant network.
Additionally, custom filters can be written. To write your own filter see:

3.5.1. General Filter Options

These options apply to every filter and are independent of the actual filter itself.

	
	target_cpds specifies where the target compound list is. This file is a csv
	with the header id,SMILES

	react_targets specifies whether a compound generated in the expansion should be further reacted

	prune_to_targets specifies whether the network should be reduced to a minimal network containing only compounds directly connected to the targets from a source

	filter_after_final_gen whether to apply the filter to the final application of reaction rules

Path to target cpds file (not required for metabolomics filter)
target_cpds = './example_data/target_list_single.csv'

Should targets be flagged for reaction
react_targets = True

Prune results to remove compounds not required to produce targets
prune_to_targets = True

Filter final generation?
filter_after_final_gen = True

3.5.2. Tanimoto Threshold Filter

The rational behind this filter is to generate a list of Tanimoto similarity scores (ranging from 0 to 1) for each generation
in comparison to the targets and use this to trim compounds to only those above a certain similarity threshold.
The maximum similarity of a given compound compared to all the targets is used. Similarity is calculated
by using the default RDKFingerprints.

Before each generation the maximum similarity for each compound set to be reacted is compared to a threshold. Compounds greater than or equal
to the threshold are reacted.

	tani_filter whether or not to use this filter

	tani_threshold is the threshold to cut off. Can be a single value or a list. If a list then the filter will use the next value in this list for each new generation

	increasing_tani specifies whether the tanimoto value of compounds must increase each generation. I.e. a child compound must be more similar to a target than at least one of its parents

Apply this filter?
tani_filter = False

Tanimito filter threshold. Can be single number or a list with length at least
equal to the number of generations (+1 if filtering after expansion)
tani_threshold = [0, 0.2, 0.7]

Make sure tani increases each generation?
increasing_tani = False

3.5.3. Tanimoto Sampling Filter

For large expansions the tanimoto threshold filter does not work well. For example, expanding 10,000 compounds from KEGG with 272 rules from metacyc yields 5 million compounds. To expand this another generation
the number of compounds has to be heavily reduced for the system resources to handle it and for analysis to be reasonable.
The threshold filter will have to be at a large value, e.g. greater than 0.9, which leads to reduced chemical diversity in the final network.

To avoid this problem, the Tanimoto Sampling Filter was implemented. The same approach as the threshold filter is taken to get a list of maximum similarity score for compounds and the list of targets.
This tanimoto score is scaled and then the distribution is sampled by inverse complementary distribution function sampling to select N compounds. This approach affords more diversity than the threshold
and can be tuned by scaling the tanimoto similarity score scaling function. By default the function is \(T^{4}\).

The filter is specified as follows:

	tani_sample specifies whether to use the filter

	sample_size specifies the number of compounds to expand each generation. If sample_size is greater than the total number of compounds all compounds are reacted

	weight specifies the weighting function for the sampling. This function accepts a float and returns a float

	weight_representation specifies how to display the weighting function in the database or stdout

Apply this sampler?
tani_sample = False

Number of compounds per generation to sample
sample_size = 5

weight is a function that specifies weighting of Tanimoto similarity
weight accepts one input
T : float in range 0-1
and returns
float in any range (will be rescaled later)
weight = None will use a T^4 to weight.
def weight(T):
 return T**4

How to represent the function in text
weight_representation = "T^4"

3.5.4. Metabolomics Filter

If you have a metabolomics dataset you would like to filter compounds against, you can use this filter.
It will force pickaxe to only keep compounds with masses (and, optionally, retention time (RT)) within a set
tolerance of a list of peaks. For example, if you had a dataset containing 3 peaks at 100, 200, and 300 m/z,
you could do an expansion and only keep compounds with masses within 0.001 Da of those 3 values.

This is useful for trying to annotate unknown peaks starting from a set of known compounds in a specific organism
from which metabolomics data was collected.

The filter is specified as follows. The following arguments are required:

	metabolomics_filter specifies whether to use this filter

	met_data_path specifies where to find your list of peaks in CSV format.

Format of CSV:

Peak ID, Retention Time, Aggregate M/Z, Polarity, Compound Name, Predicted Structure (smile), ID

Peak1, 6.33, 74.0373, negative, propionic acid, CCC(=O)O, yes

Peak2, 26.31, 84.06869909, positive, , , no

…

Note that only unidentified peaks will be used by the filter.

	possible_adducts specifies the possible adducts to consider when matching peaks, as different adducts cause different mass changes. For a list of options, see the first columns of “Negative Adducts full.txt” and “Positive Adducts full.txt” in minedatabase/data/adducts.

	mass_tolerance specifies (in Da) the mass tolerance to use for matching peaks. For example, if 0.001, only compounds with masses between 99.999 and 100.001 would match a peak at 100 m/z.

The following optional arguments allow you to add retention time as an extra constraint in the filter.
Note that this requires that you have built a RandomForestRegressor machine learning model to predict
retention time for arbitrary compounds, using mordred fingerprints as input.

	rt_predictor_pickle_path specifies the path to the built model (pickled). Make sure this is None, if you don’t want to match based on retention time.

	rt_threshold specifies the retention time tolerance (in whatever units RT is in the file at met_data_path)

	rt_important_features specifies which mordred descriptors to use as input into the model (must be in same order as model expects them to be). If None, will use all (including 3D) mordred descriptors.

Apply this filter?
metabolomics_filter = False

Path to csv with list of detected masses (and optionally, retention times).
For example: Peak ID, Retention Time, Aggregate M/Z, Polarity, Compound Name,
Predicted Structure (smile), ID
#
Peak1, 6.33, 74.0373, negative, propionic acid, CCC(=O)O, yes
Peak2, 26.31, 84.06869909, positive, , , no
...
met_data_path = "./local_data/ADP1_Metabolomics_PeakList_final.csv"

Name of dataset
met_data_name = "ADP1_metabolomics"

Adducts to add to each mass in mass list to create final list of possible
masses.
See "./minedatabase/data/adducts/All adducts.txt" for options.
possible_adducts = ["[M+H]+", "[M-H]-"]

Tolerance in Da
mass_tolerance = 0.001

Retention Time Filter Options (optional but included in metabolomics filter)

Path to pickled machine learning predictor (SMILES => RT)
rt_predictor_pickle_path = "../RT_Prediction/final_RT_model.pickle"

Allowable deviation in predicted RT (units just have to be consistent with dataset)
rt_threshold = 4.5

Mordred descriptors to use as input to model (must be in same order as in trained model)
If None, will try to use all (including 3D) mordred descriptors
rt_important_features = ["nAcid", "ETA_dEpsilon_D", "NsNH2", "MDEO-11"]

4. Generating Pickaxe Inputs

4.1. Compound Inputs

Pickaxe takes a few input files to specify compounds and rules for the expansion. One group of these
files are simply compounds, some of which are required and others are option, depending on the
desired functionality of a given Pickaxe run.

Required:

	Compounds to react.

Optional:

	Targets to filter for.

	Metabolomic data to filter with (see met_data_path parameter in Built-In Filters).

4.1.1. Compound Input

Pickaxe accepts a .csv or a .tsv that consists of two columns, an id field and a structure field.
The id field is used to label the final output and the structure field consists of
SMILES representation of compounds.

Here is an example of a valid compound input file:

id,SMILES
glucose,C(C1C(C(C(C(O1)O)O)O)O)O
TAL,C/C1=CC(\O)=C/C(=O)O1

4.1.2. Target Input

The target compound input file takes the same form as the input compounds.:

id,SMILES
1,C=C(O)COCC(C)O

4.2. Reaction Operator Inputs

There are two files required for the application of reactions:

	Reaction operators to use.

	Coreactants required by the reaction operators.

Default rules are supplied with pickaxe, however custom rules can be written and used.

4.2.1. Default Rules

4.2.1.1. Overview

A set of biological reaction rules and cofactors are provided by default. These consist of approximately 70,000 MetaCyc
reactions condensed into generic rules. Selecting all of these rules will result in a large expansion,
but they can be trimmed down significantly while still retaining high coverage of MetaCyc reactions.

	Number of Rules

	Percent Coverage of
MetaCyc Reactions

	20

	50

	100

	78

	272

	90

	500

	95

	956

	99

	1221

	100

Additionally, a set of intermediate reaction rule operators are provided as well. These
operators are less generalized than the generalized ruleset and provide uniprot information
for each operator.

4.2.1.2. Generating Default Rule Inputs

Default rules are imported from the rules module of minedatabase and have a few options
to specify what is loaded:

	Number of Rules

	Fractional Coverage of MetaCyc

	Anaerobic Rules only

	Groups to Include

	Groups to Ignore

Possible groups to ignore and include are: aromatic, aromatic_oxygen, carbonyl, nitrogen,
oxygen, fluorine, phosphorus, sulfur, chlorine, bromine, iodine, halogen. Examples of Defining
rules are given below.

The provided code returns the rule_list and coreactant_list that is passed to the pickaxe object.

4.2.1.3. Generalized Rules Mapping 90% Metacyc

from minedatabase.rules import metacyc_generalized
rule_list, coreactant_list, rule_name = metacyc_generalized(
 fraction_coverage=0.9
)

4.2.1.4. Generalized Rules with 200 Anaerobic and Halogens

from minedatabase.rules import metacyc_generalized
rule_list, coreactant_list, rule_name = metacyc_generalized(
 n_rules=200
 anaerobic=True,
 include_containing=["halogen"]
)

4.2.1.5. Intermediate Rules with all Halogens except Chlorine

from minedatabase.rules import metacyc_intermediate
rule_list, coreactant_list, rule_name = metacyc_intermediate(
 include_containing=["halogen"],
 exclude_containing=["chlorine"]
)

4.2.2. Generating Custom Rules

In the event that the default rules do not contain a reaction of interest, it is pososible
to generate your own rules. Outlined below is the process to generate rules for esterification reactions, which consists
of three parts

	Writing the reaction SMIRKS.

	Writing the reaction rule.

	Writing the coreactant list.

4.2.2.1. Writing Reactiton SMIRKS

Rules are generated using reaction SMIRKS [https://daylight.com/dayhtml/doc/theory/theory.smirks.html]
which represent reactions in a string. Importantly, these reaction rules specify atom mapping,
which keeps track of the species throughout the reaction. To higlight a simple reaction rule generation,
a deesterification reaction will be used.

[image: _images/full_rule.png]
The reaction SMIRKS is highighted the same color as the corresponding molecule in the reaction above.
Ensuring correct atom mapping is important when writing these rules. This is an exact reaction rule
and it matches the exact pattern of the reaction, which is not useful as it will not match many molecules.

Instead of using an exact reaction, a generic reaction rule can be used to match more molecules. In this case,
the radius of the atom away from the reactive site is decreased.

[image: _images/generic_rule.png]

4.2.2.2. Writing Reaction Rules

With the reaction SMIRKS written, now the whole rule for Pickaxe must be written. The rules are written
as follows in a .tsv:

RULE_ID REACTANTS RULE PROODUCTS NOTES

The rule_id is an arbitrary, unique value, the reactants and products specify how many compounds a rule
should be expecting, and the rule is the reaction SMIRKS. Notes can be provided, but have no effect
on the running of Pickaxe. The reactants and products are specified as a generic compound, “Any”, or
as a predefined coreactant.

Below is an example of a reaction rule made for a deesterification reaction.

[image: _images/deesterification.png]
RULE_ID REACTANTS RULE PROODUCTS NOTES
rule1 Any;WATER [#6:2]-(=[#8:1])-[#8:4]-[#6:5].[#8:3]>>[#6:2]-(=[#8:1])-[#8:3].[#8:4]-[#6:5] Any;Any

Note

Currently only one “Any” is allowed as a reactant and any other reactant must be
defined as a coreactant.

4.2.2.3. Defining Coreactants

Coreactants are defined in their own file that the Pickaxe object will load and use
alongside the reaction rules. The coreactant file for the example deesterification reaction
is:

#ID Name SMILES
WATER WATER O

4.2.2.4. Reaction Rule Example Summary

Summarized here is the input files for a deesterification reaction.

Reaction

[image: _images/deesterification.png]
Reaction Rule Input

RULE_ID REACTANTS RULE PROODUCTS NOTES
rule1 Any;WATER [#6:2]-(=[#8:1])-[#8:4]-[#6:5].[#8:3]>>[#6:2]-(=[#8:1])-[#8:3].[#8:4]-[#6:5] Any;Any

Coreactant Input

#ID Name SMILES
WATER WATER O

5. Custom Filters

5.1. Overview

Pickaxe expansions can grow extremely quickly in size, resulting in more compounds and reactions than a computer can
efficiently handle, both during the expansion and during the subsequent analysis.
An option to limit the chemical space explored during an expansion is to create a filter that selects
only a subset of compounds to react in each generation.
For example, you could create a filter that only allows compounds below a certain molecular weight or only compounds with
specific structural features to react. A few filters have already been written by the Tyo lab, which you can find at Built-In Filters.
We recommend looking at these as examples of how to write a filter as you write your own.

By creating and using a custom filter, you can control the scope of your expansion, allowing you to also expand for more generations.
It also saves space in the database and should make downstream analysis faster.

5.2. Requirements

Creating a custom filter requires a working knowledge of python. Default filters are created using [RDKit](https://rdkit.org/docs/api-docs.html), a python library
providing a collection of cheminformatic tools.

Ensure that that you have the [MINE-Database](https://github.com/tyo-nu/MINE-Database) github cloned on your machine.

The overall process for creating a filter is as follows:

	Write custom Filter subclass in minedatabase/filters.py

	Expose options for this filter subclass and add it to a pickaxe run in pickaxe_run.py

	(optional) Write unit test(s) for this custom filter in tests/test_unit/test_filters.py

5.3. Writing Custom Filters

To write a custom filter, you need to subclass the Filter class in filters.py. The Filter class specifies
the required functions your filter needs to implement as well as providing default methods that are inherited
by your custom filter.

There are three methods you must implement (at a minimum). These are the __init__ method and the methods that are decorated with the
@abc.abstractmethod decorator.

	__init__ - Initialize your filter’s options and inputs here.

	filter_name - This method just needs to return the filter name. This can be set to a constant string, set to a permanent self._filter_name (as in TanimotoSamplingFilter), or set to a custom self._filter_name (as in MetabolomicsFilter).

	_choose_cpds_to_filter - This is the main method you need to implement, where you can loop through the compounds at each generation and decide which ones to keep and which ones to filter out. See the built-in filters’ implementations of this method for examples. This method needs to return a set of compound IDs (e.g. “Ccffda1b2e82fcdb0e1e710cad4d5f70df7a5d74f”) that you wish to remove from the expansion. Note that if a compound is a side-product of a reaction producing a kept compound, that compound will not be removed from the expansion, it just won’t be reacted further.

There are two optional methods you may override as well. See the Filter ABC in filters.py (Filters) for more details.

	_pre_print - This method prints to stdout just before the filter is applied. It should return None.

	_post_print - This method prints to stdout just after the filter is applied. Useful for printing a summary of filtering results. It should return None.

5.4. Using Your Filter in a Pickaxe Run

Now that you have a filter defined, the next step is to import it and use it in a Pickaxe run.
Refer to the example file, pickaxe_run.py, which is detailed more in Running Pickaxe
to see an example of a Pickaxe run that uses filters. If you open pickaxe_run.py, you will notice different sections for the various built-in filters. Initialize your filter with any options
that you have defined and then ensure you are appending your filter object to the pickaxe object.

You can find this in pickaxe_run.py by scrolling down to the comment that says “# Apply filters”. The default filters all
have an if statement associated with them when the filter is defined earlier in the file. Either replicate this format, or simply append
your filter to the pickaxe object

pk.filters.append(my_filter)

That’s it! Now, pickaxe will use that filter during any expansions.

If you have written tests for your filter and think it could be valuable to the community, feel free to submit a pull request at https://github.com/tyo-nu/MINE-Database to add your filter to the built-in set.

5.5. (Optional) Writing Tests for Your Filter

While it is not necessary, it is a good idea to write filters for your test to ensure the behavior of your tests don’t
change in the event of an update. There is an already existing file located at tests/test_unit/test_filters.py that you can add
your tests to. We utilize [pytest](https://docs.pytest.org/en/stable/) and have defined useful fixtures for use in the tests.
To run these tests run the following from the base MINE-Database directory

… codeblock:

pytest tests/test_unit/test_filters.py

6. Thermodynamic Calculations

6.1. Overview of Thermodynamics Module

6.1.1. eQuilibrator

Built into Pickaxe is the ability to estimate the Gibbs free energy of compounds and reactions.
Pickaxe uses eQuilibrator to calculate thermodynamic values. More information about
eQuilibrator can be found here [https://equilibrator.weizmann.ac.il/static/classic_rxns/about.html].

6.1.2. Calculable Values

Pickaxe calculates the following values for compounds and reactions. More information
about these conditions can be found here [https://equilibrator.weizmann.ac.il/static/classic_rxns/faq.html#what-are-rg-rg-and-rg].

	
	Compounds
	
	
	: ΔfG’°: The Standard Gibbs Free Energy of Formation
	
	Uses pH = 7 and ionic strength = 0.1M

	
	Reactions
	
	
	ΔrG’°: The Standard Gibbs Free Energy of Reaction
	
	Uses pH = 7 and ionic strength = 0.1M

	
	ΔrG’m: The Physiological Gibbs Free Energy of Reaction
	
	Uses pH = 7 and ionic strength = 0.1M

	Assumes concentrations are 1mM.

	
	ΔrG’: Adjusted Gibbs Free Energy of Reaction
	
	User-specified conditions

6.2. Calculating Thermodynamics of a Pickaxe Run

6.2.1. Set-up

Thermodynamics.py uses the compound ids (c_id) and reaction ids (r_id) of pickaxe
runs to calculate values. This example assumes you have run a pickaxe run and have
it accessible either from a MongoDB or in memory in a pickaxe object. Pickaxe runs can
be stored later by using the pickleing functionality.

Additionally, an eQuilibrator database must be loaded.

6.2.2. Compound Value Calculations

If there is no eQuilibrator compounds.sqlite file present, generate one first.

>>> from equilibrator_assets.local_compound_cache import LocalCompoundCache
>>> lc = LocalCompoundCache()
>>> lc.generate_local_cache_from_default_zenodo("compounds.sqlite")
Copying default Zenodo compound cache to compounds.sqlite

Next, the thermodynamics class must be loaded and initialized, where mongo_uri is the
uri to your mongo server. Providing None will use the default localhost.

>>> from minedatabase.thermodynamics import Thermodynamics
>>> thermo = Thermodynamics()
>>> thermo.load_thermo_from_sqlite("compounds.sqlite")
Loading compounds from compounds.sqlite
>>> thermo.load_mongo(mongo_uri=mongo_uri)

The following assumes you have a valid pickaxe object or a database to cross-reference
the c_id and r_id from. No c_id or r_id is given here, but example outputs are.

Calculating ∆Gf’°

>>> thermo.standard_dg_formation_from_cid(c_id=c_id, pickaxe=pickaxe, db_name=db_name)
-724.5684043965385

Calculating ΔrG’m

>>> thermo.physiological_dg_prime_from_rid(r_id, pickaxe=pickaxe, db_name=db_name)
<Measurement(-5.432945798382008, 3.37496192184388, kilojoule / mole)>

Calculating ΔrG’ at pH = 4, ionic strength = 0.05M

>>> from equilibrator_api import Q_
>>> p_h = Q_("4")
>>> ionic_strength = Q_("0.05M)
>>> thermo.dg_prime_from_rid(r_id=r_id, db_name=db_name, p_h=p_h, ionic_strength=ionic_strength)
<Measurement(11.68189173633911, 3.37496192184388, kilojoule / mole)>

7. API Reference

	7.1. Compound I/O

	7.2. Databases

	7.3. Filters

	7.4. Metabolomics

	7.5. Pickaxe

	7.6. Reactions

	7.7. Rules

	7.8. Thermodynamics

	7.9. Utilities

7.1. Compound I/O

Compound_io.py: Functions to load MINE databases from and dump compounds
into common cheminformatics formats

	
minedatabase.compound_io.export_inchi_rxns(mine_db: minedatabase.databases.MINE, target: str, rxn_ids: Optional[List[str]] = None) → None

	Export reactions from a MINE db to a .tsv file.

	Parameters

	
	mine_dbMINE
	Name of MongoDB to export reactions from.

	targetstr
	Path to folder to save .tsv export file in.

	rxn_idsUnion[List[str], None], optional
	Only export reactions with these ids, by default None.

	
minedatabase.compound_io.export_kbase(mine_db: minedatabase.databases.MINE, target: str) → None

	Exports MINE compound and reaction data as tab-separated values files
amenable to use in ModelSEED.

	Parameters

	
	mine_dbMINE
	The database to export.

	targetstr
	Directory in which to place the files.

	
minedatabase.compound_io.export_mol(mine_db: minedatabase.databases.MINE, target: str, name_field: str = '_id') → None

	Exports compounds from the database as a MDL molfiles

	Parameters

	
	mine_dbMINE
	MINE object that contains the database.

	targetstr
	Directory in which to place the files.

	name_fieldstr, optional
	FIeld to provide names for the mol files. Must be unique and universal.
By default, “_id”.

	
minedatabase.compound_io.export_sdf(mine_db: minedatabase.databases.MINE, dir_path: str, max_compounds: Optional[int] = None) → None

	Exports compounds from the database as an MDL SDF file.

	Parameters

	
	mine_dbMINE
	MINE object that contains the database.

	dir_pathstr
	Directory for files.

	max_compoundsint, optional
	Maximum number of compounds per file, by default None.

	
minedatabase.compound_io.export_smiles(mine_db: minedatabase.databases.MINE, dir_path: str, max_compounds: Optional[int] = None) → None

	Exports compounds from the database as a SMILES file.

	Parameters

	
	mine_dbMINE
	MINE object that contains the database.

	dir_pathstr
	Directory for files.

	max_compoundsint, optional
	Maximum number of compounds per file, by default None.

	
minedatabase.compound_io.export_tsv(mine_db: minedatabase.databases.MINE, target: str, compound_fields: Tuple[str] = ('_id', 'Names', 'Model_SEED', 'Formula', 'Charge', 'Inchi'), reaction_fields: Tuple[str] = ('_id', 'SMILES_rxn', 'C_id_rxn')) → None

	Exports MINE compound and reaction data as tab-separated values files
amenable to use in ModelSEED.

	Parameters

	
	mine_dbMINE
	The database to export.

	targetstr
	Directory, in which to place the files.

	compound_fieldsTuple[str], optional
	Fields to export in the compound table, by default
(‘_id’, ‘Names’, ‘Model_SEED’, ‘Formula’, ‘Charge’, ‘Inchi’).

	reaction_fieldsTuple[str], optional
	Fields to export in the reaction table, by default
(‘_id’, ‘SMILES_rxn’, ‘C_id_rxn’).

	
minedatabase.compound_io.import_mol_dir(mine_db: minedatabase.databases.MINE, target: str, name_field: str = 'Name', overwrite: bool = False) → None

	Imports a directory of molfiles as a MINE database.

	Parameters

	
	mine_dbMINE
	The database to export.

	targetstr
	Directory in which to place the files.

	name_fieldstr, optional
	Field for the compound name, by default “Name”.

	overwritebool, optional
	Replace old compounds with new ones if a collision happens, by default False.

	
minedatabase.compound_io.import_sdf(mine_db: minedatabase.databases.MINE, target: str) → None

	Imports a SDF file as a MINE database.

	Parameters

	
	mine_dbMINE
	The database to export.

	targetstr
	Directory in which to place the files.

	
minedatabase.compound_io.import_smiles(mine_db: minedatabase.databases.MINE, target: str) → None

	Imports a smiles file as a MINE database.

	Parameters

	
	mine_dbMINE
	The database to export.

	targetstr
	Directory in which to place the files.

7.2. Databases

Databases.py: This file contains MINE database classes including database
loading and writing functions.

	
class minedatabase.databases.MINE(name: str, uri: str = 'mongodb://localhost:27017/')

	This class provides an interface to the MongoDB and some useful functions.

	Parameters

	
	namestr
	Name of the database to work with.

	uristr, optional
	uri of the mongo server, by default “mongodb://localhost:27017/”.

	Attributes

	
	clientpymongo.MongoClient
	client connection to the MongoDB.

	compoundsCollection
	Compounds collection.

	core_compoundsCollection
	Core compounds collection.

	meta_dataCollection
	Metadata collection.

	modelsCollection
	Models collection.

	namestr
	Name of the database

	operatorsCollection
	Operators collection.

	reactionsCollection
	Reactions collection.

	target_compoundsCollection
	Target compounds collection.

	uristr
	MongoDB connection string.

	
add_reaction_mass_change(reaction: Optional[str] = None) → Optional[float]

	Calculate the change in mass between reactant and product compounds.

This is useful for discovering compounds in molecular networking. If no reaction
is specified then mass change of each reaction in the database will be
calculated.

	Parameters

	
	reactionstr, optional
	Reaction ID to calculate the mass change for, by default None.

	Returns

	
	float, optional
	Mass change of specified reaction. None if masses not all found.

	
build_indexes() → None

	Build indexes for efficient querying of the database.

	
generate_image_files(path: str, query: Optional[dict] = None, dir_depth: int = 0, img_type: str = 'svg:-a,nosource,w500,h500', convert_r: bool = False) → None

	Generates image files for compounds in database using ChemAxon’s MolConvert.

	Parameters

	
	pathstr
	Target directory for image file.

	querydict, optional
	Query to limit number of files generated, by default None.

	dir_depthint, optional
	The number of directory levels to split the compounds
into for files system efficiency. Ranges from 0 (all in top
level directory) to the length of the file name (40 for MINE hashes),
by default 0.

	img_typestr, optional
	Type of image file to be generated. See molconvert
documentation for valid options, by default ‘svg:-a,nosource,w500,h500’.

	convert_rbool, optional
	Convert R in the smiles to *, by default False.

	
minedatabase.databases.establish_db_client(uri: Optional[str] = None) → pymongo.mongo_client.MongoClient

	Establish a connection to a mongo database given a URI.

Uses the provided URI to connect to a mongoDB. If none is given
the default URI is used when using pymongo.

	Parameters

	
	uristr, optional
	URI to connect to mongo DB, by default None.

	Returns

	
	pymongo.MongoClient
	Connection to the specified mongo instance.

	Raises

	
	IOError
	Attempt to connect to database timed out.

	
minedatabase.databases.write_compounds_to_mine(compounds: List[dict], db: minedatabase.databases.MINE, chunk_size: int = 10000, processes: int = 1) → None

	Write compounds to reaction collection of MINE.

	Parameters

	
	compoundsList[dict]
	Dictionary of compounds to write.

	dbMINE
	MINE object to write compounds with.

	chunk_sizeint, optional
	Size of chunks to break compounds into when writing, by default 10000.

	processesint, optional
	Number of processors to use, by default 1.

	
minedatabase.databases.write_core_compounds(compounds: List[dict], db: minedatabase.databases.MINE, mine: str, chunk_size: int = 10000, processes=1) → None

	Write core compounds to the core compound database.

Calculates and formats compounds into appropriate form to insert into the
core compound database in the mongo instance. Core compounds are attempted
to be inserted and collisions are detected on the database. The list of
MINEs a given compound is found in is updated as well.

	Parameters

	
	compoundsdict
	List of compound dictionaries to write.

	dbMINE
	MINE object to write core compounds with.

	minestr
	Name of the MINE.

	chunk_sizeint, optional
	Size of chunks to break compounds into when writing, by default 10000.

	processesint, optional
	The number of processors to use, by default 1.

	
minedatabase.databases.write_reactions_to_mine(reactions: List[dict], db: minedatabase.databases.MINE, chunk_size: int = 10000) → None

	Write reactions to reaction collection of MINE.

	Parameters

	
	reactionsList[dict]
	Dictionary of reactions to write.

	dbMINE
	MINE object to write reactions with.

	chunk_sizeint, optional
	Size of chunks to break reactions into when writing, by default 10000.

	
minedatabase.databases.write_targets_to_mine(targets: List[dict], db: minedatabase.databases.MINE, chunk_size: int = 10000) → None

	Write target compounds to target collection of MINE.

	Parameters

	
	targetsList[dict]
	Listt of target dictionaries to write.

	dbMINE
	MINE object to write targets with.

	chunk_sizeint, optional
	Size of chunks to break compounds into when writing, by default 10000.

7.3. Filters

7.4. Metabolomics

Provides functionality to interact with metabolomics datasets and search
MINE databases for metabolomics hits.

	
class minedatabase.metabolomics.MetabolomicsDataset(name: str, adducts: Optional[List[str]] = None, known_peaks: Optional[List[minedatabase.metabolomics.Peak]] = None, unknown_peaks: Optional[List[minedatabase.metabolomics.Peak]] = None, native_set: Set[str] = {}, ppm: bool = False, tolerance: float = 0.001, halogens: bool = False, verbose: bool = False)

	A class containing all the information for a metabolomics data set.

	
annotate_peaks(db: minedatabase.databases.MINE, core_db: minedatabase.databases.MINE) → None

	This function iterates through the unknown peaks in the dataset and
searches the database for compounds that match a peak m/z given the
adducts permitted. Statistics on the annotated data set are printed.

	Parameters

	
	dbMINE
	MINE database.

	core_dbMINE
	Core database containing spectra info.

	
check_product_of_native(cpd_ids: List[str], db: minedatabase.databases.MINE) → List[str]

	Filters list of compound IDs to just those associated with compounds
produced from a native hit in the model (i.e. in native set).

	
enumerate_possible_masses(tolerance: float) → None

	Generate all possible masses from unknown peaks and list of
adducts. Saves these mass ranges to self.possible_ranges.

	Parameters

	
	tolerancefloat
	Mass tolerance in Daltons.

	
find_db_hits(peak: minedatabase.metabolomics.Peak, db: minedatabase.databases.MINE, core_db: minedatabase.databases.MINE, adducts: List[Tuple[str, float, float]]) → None

	This function searches the database for matches of a peak given
adducts and updates the peak object with that information.

	Parameters

	
	peakPeak
	Peak object to query against MINE compound database.

	dbMINE
	MINE database to query.

	adductsList[Tuple[str, float, float]]
	List of adducts. Each adduct contains three values in a tuple:
(adduct name, mass multiplier, ion mass).

	
get_rt(peak_id: str) → Optional[float]

	Return retention time for peak with given ID. If not found, returns
None.

	Parameters

	
	peak_idstr
	ID of peak as listed in dataset.

	Returns

	
	rtfloat, optional
	Retention time of peak with given ID, None if not found.

	
class minedatabase.metabolomics.Peak(name: str, r_time: float, mz: float, charge: str, inchi_key: str = None, ms2: List[float, float] = None)

	Peak object which contains peak metadata as well as mass, retention
time, spectra, and any MINE database hits.

	Parameters

	
	namestr
	Name or ID of the peak.

	r_timefloat
	Retention time of the peak.

	mzfloat
	Mass-to-charge ratio (m/z) of the peak.

	chargestr
	Charge of the peak, “+” or “-“.

	inchi_keystr, optional
	InChI key of the peak, if already identified, by default None.

	ms2List[float], optional
	MS2 spectra m/z values for this peak, by default None.

	Attributes

	
	isomersList[Dict]
	List of compound documents in JSON (dict) format.

	formulasSet[str]
	All the unique compound formulas from compounds found for this peak.

	total_hitsint
	Number of compound hits for this peak.

	native_hitbool
	Whether this peak matches a compound provided in the native set.

	
score_isomers(metric: Callable[[list, list], float] = <function dot_product>, energy_level: int = 20, tolerance: float = 0.005) → None

	Scores and sorts isomers based on mass spectra data.

Calculates the cosign similarity score between the provided ms2 peak
list and pre-calculated CFM-spectra and sorts the isomer list
according to this metric.

	Parameters

	
	metricfunction, optional
	The scoring metric to use for the spectra. Function must accept 2
lists of (mz, intensity) tuples and return a score, by default dot_product.

	energy_levelint, optional
	The Fragmentation energy level to use. May be 10,
20 or 40., by default 20.

	tolerancefloat, optional
	The precision to use for matching m/z in mDa, by default 0.005.

	Raises

	
	ValueError
	Empty ms2 peak.

	
class minedatabase.metabolomics.Struct(**entries)

	convert key-value pairs into object-attribute pairs.

	
minedatabase.metabolomics.dot_product(x: List[tuple], y: List[tuple], epsilon: float = 0.01) → float

	Calculate the dot product of two spectra, allowing for some variability
in mass-to-charge ratios

	Parameters

	
	xList[tuple]
	First spectra m/z values.

	yList[tuple]
	Second spectra m/z values.

	epsilonfloat, optional
	Mass tolerance in Daltons, by default 0.01.

	Returns

	
	dot_prodfloat
	Dot product of x and y.

	
minedatabase.metabolomics.get_KEGG_comps(db: minedatabase.databases.MINE, core_db: minedatabase.databases.MINE, kegg_db: pymongo.database.Database, model_ids: List[str]) → set

	Get MINE IDs from KEGG MINE database for compounds in model(s).

	Parameters

	
	dbMINE
	MINE Mongo database.

	kegg_dbpymongo.database.Database
	Mongo database with annotated organism metabolomes from KEGG.

	model_idsList[str]
	List of organism identifiers from KEGG.

	Returns

	
	set
	MINE IDs of compounds that are linked to a KEGG ID in at least one of
the organisms in model_ids.

	
minedatabase.metabolomics.jaccard(x: List[tuple], y: List[tuple], epsilon: float = 0.01) → float

	Calculate the Jaccard Index of two spectra, allowing for some
variability in mass-to-charge ratios

	Parameters

	
	xList[tuple]
	First spectra m/z values.

	yList[tuple]
	Second spectra m/z values.

	epsilonfloat, optional
	Mass tolerance in Daltons, by default 0.01.

	Returns

	
	jaccard_indexfloat
	Jaccard Index of x and y.

	
minedatabase.metabolomics.ms2_search(db: minedatabase.databases.MINE, core_db: minedatabase.databases.MINE, keggdb: pymongo.database.Database, text: str, text_type: str, ms_params) → List

	Search for compounds matching MS2 spectra.

	Parameters

	
	dbMINE
	Contains compound documents to search.

	core_dbMINE
	Contains extra info (including spectra) for compounds in db.

	keggdbpymongo.database.Database
	Contains models with associated compound documents.

	textstr
	Text as in metabolomics datafile for specific peak.

	text_typestr
	Type of metabolomics datafile (mgf, mzXML, and msp are supported). If
text, assumes m/z values are separated by newlines (and set text_type
to “form”).

	ms_paramsdict
	
	“tolerance”: float specifying tolerance for m/z, in mDa by default.
	Can specify in ppm if “ppm” key’s value is set to True.

“charge”: bool (1 for positive, 0 for negative).
“energy_level”: int specifying fragmentation energy level to use. May

be 10, 20, or 40.

	“scoring_function”: str describing which scoring function to use. Can
	be either “jaccard” or “dot product”.

“adducts”: list of adducts to use. If not specified, uses all adducts.
“models”: List of model _ids. If supplied, score compounds higher if

present in model.

	“ppm”: bool specifying whether “tolerance” is in mDa or ppm. Default
	value for ppm is False (so tolerance is in mDa by default).

	“kovats”: length 2 tuple specifying min and max kovats retention index
	to filter compounds (e.g. (500, 1000)).

	“logp”: length 2 tuple specifying min and max logp to filter compounds
	(e.g. (-1, 2)).

	“halogens”: bool specifying whether to filter out compounds containing
	F, Cl, or Br. Filtered out if set to True. False by default.

	Returns

	
	ms_adduct_outputlist
	Compound JSON documents matching ms2 search query.

	
minedatabase.metabolomics.ms_adduct_search(db: minedatabase.databases.MINE, core_db: minedatabase.databases.MINE, keggdb: pymongo.database.Database, text: str, text_type: str, ms_params) → List

	Search for compound-adducts matching precursor mass.

	Parameters

	
	dbMINE
	Contains compound documents to search.

	core_dbMINE
	Contains extra info (including spectra) for compounds in db.

	keggdbpymongo.database.Database
	Contains models with associated compound documents.

	textstr
	Text as in metabolomics datafile for specific peak.

	text_typestr
	Type of metabolomics datafile (mgf, mzXML, and msp are supported). If
text, assumes m/z values are separated by newlines (and set text_type
to “form”).

	ms_paramsdict
	
	“tolerance”: float specifying tolerance for m/z, in mDa by default.
	Can specify in ppm if “ppm” key’s value is set to True.

“adducts”: list of adducts to use. If not specified, uses all adducts.
“models”: List of model _ids. If supplied, score compounds higher if

present in model. [“eco”] by default (E. coli).

	“ppm”: bool specifying whether “tolerance” is in mDa or ppm. Default
	value for ppm is False (so tolerance is in mDa by default).

	“kovats”: length 2 tuple specifying min and max kovats retention index
	to filter compounds (e.g. (500, 1000)).

	“logp”: length 2 tuple specifying min and max logp to filter compounds
	(e.g. (-1, 2)).

	“halogens”: bool specifying whether to filter out compounds containing
	F, Cl, or Br. Filtered out if set to True. False by default.

	Returns

	
	ms_adduct_outputlist
	Compound JSON documents matching ms adduct query.

	
minedatabase.metabolomics.read_adduct_names(filepath: str) → List[str]

	Read adduct names from text file at specified path into a list.

	Parameters

	
	filepathstr
	Path to adduct text file.

	Returns

	
	adductslist
	Names of adducts in text file.

Notes

Not used in this codebase but used by MINE-Server to validate adduct input.

	
minedatabase.metabolomics.read_mgf(input_string: str, charge: bool, ms2_delim='\t') → List[minedatabase.metabolomics.Peak]

	Parse mgf metabolomics data file.

	Parameters

	
	input_stringstr
	Metabolomics input data file.

	chargebool
	True if positive, False if negative.

	ms2_delimstr
	Delimiter for whitespace between intensity and m/z value. Usually tab
but can also be a space in some MGF files. Tab by default.

	Returns

	
	peaksList[Peak]
	A list of Peak objects.

	
minedatabase.metabolomics.read_msp(input_string: str, charge: bool) → List[minedatabase.metabolomics.Peak]

	Parse msp metabolomics data file.

	Parameters

	
	input_stringstr
	Metabolomics input data file.

	chargebool
	True if positive, False if negative.

	Returns

	
	peaksList[Peak]
	A list of Peak objects.

	
minedatabase.metabolomics.read_mzxml(input_string: str, charge: bool) → List[minedatabase.metabolomics.Peak]

	Parse mzXML metabolomics data file.

	Parameters

	
	input_stringstr
	Metabolomics input data file.

	chargebool
	True if positive, False if negative.

	Returns

	
	List[Peak]
	A list of Peak objects.

	
minedatabase.metabolomics.score_compounds(compounds: list, model_id: str = None, core_db: pymongo.database = None, mine_db: pymongo.database = None, kegg_db: pymongo.database = None, parent_frac: float = 0.75, reaction_frac: float = 0.25, get_native: bool = False) → List[dict]

	This function validates compounds against a metabolic model, returning
only the compounds which pass.

	Parameters

	
	dbMongo DB
	Should contain a “models” collection with compound and reaction IDs
listed.

	core_dbMongo DB
	Core MINE database.

	compoundslist
	Each element is a dict describing that compound. Should have an ‘_id’
field.

	model_idstr
	KEGG organism code (e.g. ‘hsa’).

	parent_fracfloat, optional
	Weighting for compounds derived from compounds in the provided model.
0.75 by default.

	reaction_fracfloat, optional
	Weighting for compounds derived from known compounds not in the model.
0.25 by default.

	Returns

	
	compoundsList[dict]
	Modified version of input compounds list, where each compound now has
a ‘Likelihood_score’ key and value between 0 and 1.

	
minedatabase.metabolomics.spectra_download(db: minedatabase.databases.MINE, mongo_id: Optional[str] = None) → str

	Download one or more spectra for compounds matching a given query.

	Parameters

	
	dbMINE
	Contains compound documents to search.

	mongo_querystr, optional (default: None)
	A valid Mongo query as a literal string. If None, all compound spectra
are returned.

	parent_filterstr, optional (default: None)
	If set to a metabolic model’s Mongo _id, only get spectra for compounds
in or derived from that metabolic model.

	putativebool, optional (default: True)
	If False, only find known compounds (i.e. in Generation 0). Otherwise,
finds both known and predicted compounds.

	Returns

	
	spectral_librarystr
	Text of all matching spectra, including headers and peak lists.

7.5. Pickaxe

Pickaxe.py: Create network expansions from reaction rules and compounds.

This module generates new compounds from user-specified starting
compounds using a set of SMARTS-based reaction rules.

	
class minedatabase.pickaxe.Pickaxe(rule_list: Optional[str] = None, coreactant_list: Optional[str] = None, explicit_h: bool = False, kekulize: bool = False, neutralise: bool = True, errors: bool = True, inchikey_blocks_for_cid: int = 1, database: Optional[str] = None, database_overwrite: bool = False, mongo_uri: bool = 'mongodb://localhost:27017', image_dir: Optional[str] = None, quiet: bool = True, react_targets: bool = True, filter_after_final_gen: bool = True, prune_between_gens: bool = False)

	Class to generate expansions with compounds and reaction rules.

This class generates new compounds from user-specified starting
compounds using a set of SMARTS-based reaction rules. It may be initialized
with a text file containing the reaction rules and coreactants or this may
be done on an ad hoc basis.

	Parameters

	
	rule_liststr
	Filepath of rules.

	coreactant_liststr
	Filepath of coreactants.

	explicit_hbool, optional
	Whether rules utilize explicit hydrogens, by default True.

	kekulizebool, optional
	Whether or not to kekulize compounds before reaction,
by default False.

	neutralisebool, optional
	Whether or not to neutralise compounds, by default True.

	errorsbool, optional
	Whether or not to print errors to stdout, by default True.

	inchikey_blocks_for_cidint, optional
	How many blocks of the InChI key to use for the compound id,
by default 1.

	databasestr, optional
	Name of the database where to save results, by default None.

	database_overwritebool, optional
	Whether or not to erase existing database in event of a collision,
by default False.

	mongo_uribool, optional
	uri for the mongo client, by default ‘mongodb://localhost:27017’.

	image_dirstr, optional
	Filepath where images should be saved, by default None.

	quietbool, optional
	Whether to silence warnings, by default False.

	react_targetsbool, optional
	Whether or not to apply reactions to generated compounds that match
targets, by default True.

	filter_after_final_genbool, optional
	Whether to apply filters after final expansion, by default True.

	prune_between_gensbool, optional
	Whether to prune network between generations if using filters

	Attributes

	
	operators: dict
	Reaction operators to transform compounds with.

	coreactants: dict
	Coreactants required by the operators.

	compounds: dict
	Compounds in the pickaxe network.

	reactions: dict
	Reactions in the pickaxe network.

	generation: int
	The current generation

	explicit_hbool
	Whether rules utilize explicit hydrogens.

	kekulizebool
	Whether or not to kekulize compounds before reaction.

	neutralisebool
	Whether or not to neutralise compounds.

	fragmented_molsbool
	Whether or not to allow fragmented molecules.

	radical_checkbool
	Whether or not to check and remove radicals.

	image_dirstr, optional
	Filepath where images should be saved.

	errorsbool
	Whether or not to print errors to stdout.

	quietbool
	Whether or not to silence warnings.

	filters: List[object]
	A list of filters to apply during the expansion.

	targetsdict
	Molecules to be targeted during expansions.

	target_smiles: List[str]
	The SMILES of all the targets.

	react_targetsbool
	Whether or not to react targets when generated.

	filter_after_final_genbool
	Whether or not to filter after the last expansion.

	prune_between_gensbool, optional
	Whether to prune network between generations if using filters.

	mongo_uristr
	The connection string to the mongo database.

	cid_num_inchi_blocksint
	How many blocks of the inchi-blocks to use to generate the compound id.

	
assign_ids() → None

	Assign a numerical ID to compounds (and reactions).

Assign IDs that are unique only to the CURRENT run.

	
find_minimal_set(white_list: Set[str]) → Tuple[set, set]

	Find the minimal set of compounds and reactions given a white list.

Given a whitelist this function finds the minimal set of compound and
reactions ids that comprise the set.

	Parameters

	
	white_listSet[str]
	List of compound_ids to use to filter reaction network to.

	Returns

	
	Tuple[set, set]
	The filtered compounds and reactions.

	
load_compound_set(compound_file: Optional[str] = None, id_field: str = 'id') → str

	Load compounds for expansion into pickaxe.

	Parameters

	
	compound_filestr, optional
	Filepath of compounds, by default None.

	id_fieldstr, optional
	Header value of compound id in input file, by default ‘id’.

	Returns

	
	str
	List of SMILES that were succesfully loaded into pickaxe.

	Raises

	
	ValueError
	No file specified for loading.

	
load_pickled_pickaxe(fname: str) → None

	Load pickaxe from pickle.

Load pickled pickaxe object.

	Parameters

	
	fnamestr
	filename to read (must be .pk).

	
load_targets(target_compound_file: Optional[str], id_field: str = 'id') → None

	Load targets into pickaxe.

	Parameters

	
	target_compound_filestr
	Filepath of target compounds.

	id_fieldstr, optional
	Header value of compound id in input file, by default ‘id’.

	
pickle_pickaxe(fname: str) → None

	Pickle key pickaxe items.

Pickle pickaxe object to be loaded in later.

	Parameters

	
	fnamestr
	filename to save (must be .pk).

	
prune_network(white_list: list, print_output: str = True) → None

	Prune the reaction network to a list of targets.

Prune the predicted reaction network to only compounds and reactions
that terminate in a specified white list of compounds.

	Parameters

	
	white_listlist
	A list of compound ids to filter the network to.

	print_outputbool
	Whether or not to print output

	
prune_network_to_targets() → None

	Prune the reaction network to the target compounds.

Prune the predicted reaction network to only compounds and reactions
that terminate in the target compounds.

	
save_to_mine(processes: int = 1, indexing: bool = True, write_core: bool = False) → None

	Save pickaxe run to MINE database.

	Parameters

	
	processesint, optional
	Number of processes to use, by default 1.

	indexingbool, optional
	Whether or not to add indexes, by default True.

	write_corebool, optional
	Whether or not to write to core database, by default False.

	
transform_all(processes: int = 1, generations: int = 1) → None

	Transform compounds with reaction operators.

Apply reaction rules to compounds and generate a specified number
of new generations.

	Parameters

	
	processesint, optional
	Number of processes to run in parallel, by default 1.

	generationsint, optional
	Number of generations to create, by default 1.

	
write_compound_output_file(path: str, dialect: str = 'excel-tab') → None

	Write compounds to an output file.

	Parameters

	
	pathstr
	Path to write data.

	dialectstr, optional
	Dialect of the output, by default ‘excel-tab’.

	
write_reaction_output_file(path: str, delimiter: str = '\t') → None

	Write all reaction data to the specified path.

	Parameters

	
	pathstr
	Path to write data.

	delimiterstr, optional
	Delimiter for the output file, by default ‘t’.

7.6. Reactions

Reaction.py: Methods to execute reactions.

	
minedatabase.reactions.transform_all_compounds_with_full(compound_smiles: list, coreactants: dict, coreactant_dict: dict, operators: dict, generation: int, explicit_h: bool, kekulize: bool, processes: int) → Tuple[dict, dict]

	Transform compounds given a list of rules.

Carry out the transformation of a list of compounds given operators.
Generates new products and returns them to be processed by pickaxe.

	Parameters

	
	compound_smileslist
	List of SMILES to react.

	coreactantsdict
	Dictionary of correactants RDKit Mols defined in rules.

	coreactant_dictdict
	Dictionary of correactant compoudnds defined in rules.

	operatorsdict
	Dictionary of reaction rules.

	generationint
	Value of generation to expand.

	explicit_hbool
	Whether or not to have explicit Hs in reactions.

	kekulizebool
	Whether or not to kekulize compounds.

	processesint
	Number of processors being used.

	Returns

	
	Tuple[dict, dict]
	Returns a tuple of New Compounds and New Reactants.

7.7. Rules

7.8. Thermodynamics

7.9. Utilities

Utils.py: contains basic functions reused in various contexts in other
modules

	
class minedatabase.utils.Chunks(it: collections.abc.Iterable, chunk_size: int = 1, return_list: bool = False)

	A class to chunk an iterator up into defined sizes.

	
next() → Union[List[itertools.chain], itertools.chain]

	Returns the next chunk from the iterable.
This method is not thread-safe.

	Returns

	
	next_sliceUnion[List[chain], chain]
	Next chunk.

	
class minedatabase.utils.StoichTuple(stoich, c_id)

	
	
property c_id

	Alias for field number 1

	
property stoich

	Alias for field number 0

	
minedatabase.utils.convert_sets_to_lists(obj: dict) → dict

	Recursively converts dictionaries that contain sets to lists.

	Parameters

	
	objdict
	Input object to convert sets from.

	Returns

	
	dict
	dictionary with no sets.

	
minedatabase.utils.file_to_dict_list(filepath: str) → list

	Accept a path to a CSV, TSV or JSON file and return a dictionary list.

	Parameters

	
	filepathstr
	File to load into a dictionary list.

	Returns

	
	list
	Dictionary list.

	
minedatabase.utils.get_atom_count(mol: rdkit.Chem.rdchem.Mol, radical_check: bool = False) → collections.Counter

	Takes a mol object and returns a counter with each element type in the set.

	Parameters

	
	molrdkit.Chem.rdchem.Mol
	Mol object to count atoms for.

	radical_checkbool, optional
	Check for radical electrons and count if present.

	Returns

	
	atomscollections.Counter
	Count of each atom type in input molecule.

	
minedatabase.utils.get_compound_hash(smi: str, cpd_type: str = 'Predicted', inchi_blocks: int = 1) → Tuple[str, Optional[str]]

	Create a hash string for a given compound.

This function generates an unique identifier for a compound, ensuring a
normalized SMILES. The compound hash is generated by sanitizing and neutralizing the
SMILES and then generating a hash from the sha1 method in the haslib.

	The hash is prepended with a character depending on the type. Default value is “C”:
	
	Coreactant: “X”

	Target Compound: “T”

	Predicted Compound: “C”

	Parameters

	
	smistr
	The SMILES of the compound.

	cpd_typestr, optional
	The Compound Type, by default ‘Predicted’.

	Returns

	
	Tuple[str, Union[str, None]]
	Compound hash, InChI-Key.

	
minedatabase.utils.get_dotted_field(input_dict: dict, accessor_string: str) → dict

	Gets data from a dictionary using a dotted accessor-string.

	Parameters

	
	input_dictdict
	A nested dictionary.

	accessor_stringstr
	The value in the nested dict.

	Returns

	
	dict
	Data from the dictionary.

	
minedatabase.utils.get_fp(smi: str) → rdkit.Chem.AllChem.RDKFingerprint

	Generate default RDKFingerprint.

	Parameters

	
	smistr
	SMILES of the molecule.

	Returns

	
	AllChem.RDKFingerprint
	Default fingerprint of the molecule.

	
minedatabase.utils.get_reaction_hash(reactants: List[minedatabase.utils.StoichTuple], products: List[minedatabase.utils.StoichTuple]) → Tuple[str, str]

	Hashes reactant and product lists.

Generates a unique ID for a given reaction for use in MongoDB.

	Parameters

	
	reactantsList[StoichTuple]
	List of reactants.

	productsList[StoichTuple]
	List of products.

	Returns

	
	Tuple[str, str]
	Reaction hash and SMILES.

	
minedatabase.utils.get_size(obj_0)

	Recursively iterate to sum size of object & members.

	
minedatabase.utils.mongo_ids_to_mine_ids(mongo_ids: List[str], core_db) → int

	Convert mongo ID to a MINE ID for a given compound.

	Parameters

	
	mongo_idList[str]
	List of IDs in Mongo (hashes).

	core_dbMINE
	Core database connection. Type annotation not present to avoid circular
imports.

	Returns

	
	mine_idint
	MINE ID.

	
minedatabase.utils.neutralise_charges(mol: rdkit.Chem.rdchem.Mol, reactions=None) → rdkit.Chem.rdchem.Mol

	Neutralize all charges in an rdkit mol.

	Parameters

	
	molrdkit.Chem.rdchem.Mol
	Molecule to neutralize.

	reactionslist, optional
	patterns to neutralize, by default None.

	Returns

	
	molrdkit.Chem.rdchem.Mol
	Neutralized molecule.

	
minedatabase.utils.postsanitize_smiles(smiles_list)

	Postsanitize smiles after running SMARTS.
:returns tautomer list of list of smiles

	
minedatabase.utils.prevent_overwrite(write_path: str) → str

	Prevents overwrite of existing output files by appending “_new” when
needed.

	Parameters

	
	write_pathstr
	Path to write.

	Returns

	
	str
	Updated path to write.

	
minedatabase.utils.save_dotted_field(accessor_string: str, data: dict)

	Saves data to a dictionary using a dotted accessor-string.

	Parameters

	
	accessor_stringstr
	A dotted path description, e.g. “DBLinks.KEGG”.

	datadict
	The value to be stored.

	Returns

	
	dict
	The nested dictionary.

8. Support

Need help? Found a bug? Have an idea for a useful feature?

Feel free to open up an issue at https://github.com/tyo-nu/MINE-Database for any of these situations, and we will get back to you as soon as we can!

 Python Module Index

 m

 		 	

 		
 m	

 	[image: -]
 	
 minedatabase	

 	
 	
 minedatabase.compound_io	

 	
 	
 minedatabase.databases	

 	
 	
 minedatabase.filters	

 	
 	
 minedatabase.metabolomics	

 	
 	
 minedatabase.pickaxe	

 	
 	
 minedatabase.reactions	

 	
 	
 minedatabase.utils	

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | I
 | J
 | L
 | M
 | N
 | P
 | R
 | S
 | T
 | W

A

 	
 	add_reaction_mass_change() (minedatabase.databases.MINE method)

 	
 	annotate_peaks() (minedatabase.metabolomics.MetabolomicsDataset method)

 	assign_ids() (minedatabase.pickaxe.Pickaxe method)

B

 	
 	build_indexes() (minedatabase.databases.MINE method)

C

 	
 	c_id (minedatabase.utils.StoichTuple property)

 	check_product_of_native() (minedatabase.metabolomics.MetabolomicsDataset method)

 	
 	Chunks (class in minedatabase.utils)

 	convert_sets_to_lists() (in module minedatabase.utils)

D

 	
 	dot_product() (in module minedatabase.metabolomics)

E

 	
 	enumerate_possible_masses() (minedatabase.metabolomics.MetabolomicsDataset method)

 	establish_db_client() (in module minedatabase.databases)

 	export_inchi_rxns() (in module minedatabase.compound_io)

 	export_kbase() (in module minedatabase.compound_io)

 	
 	export_mol() (in module minedatabase.compound_io)

 	export_sdf() (in module minedatabase.compound_io)

 	export_smiles() (in module minedatabase.compound_io)

 	export_tsv() (in module minedatabase.compound_io)

F

 	
 	file_to_dict_list() (in module minedatabase.utils)

 	
 	find_db_hits() (minedatabase.metabolomics.MetabolomicsDataset method)

 	find_minimal_set() (minedatabase.pickaxe.Pickaxe method)

G

 	
 	generate_image_files() (minedatabase.databases.MINE method)

 	get_atom_count() (in module minedatabase.utils)

 	get_compound_hash() (in module minedatabase.utils)

 	get_dotted_field() (in module minedatabase.utils)

 	
 	get_fp() (in module minedatabase.utils)

 	get_KEGG_comps() (in module minedatabase.metabolomics)

 	get_reaction_hash() (in module minedatabase.utils)

 	get_rt() (minedatabase.metabolomics.MetabolomicsDataset method)

 	get_size() (in module minedatabase.utils)

I

 	
 	import_mol_dir() (in module minedatabase.compound_io)

 	
 	import_sdf() (in module minedatabase.compound_io)

 	import_smiles() (in module minedatabase.compound_io)

J

 	
 	jaccard() (in module minedatabase.metabolomics)

L

 	
 	load_compound_set() (minedatabase.pickaxe.Pickaxe method)

 	
 	load_pickled_pickaxe() (minedatabase.pickaxe.Pickaxe method)

 	load_targets() (minedatabase.pickaxe.Pickaxe method)

M

 	
 	MetabolomicsDataset (class in minedatabase.metabolomics)

 	MINE (class in minedatabase.databases)

 	
 minedatabase.compound_io

 	module

 	
 minedatabase.databases

 	module

 	
 minedatabase.filters

 	module

 	
 minedatabase.metabolomics

 	module

 	
 minedatabase.pickaxe

 	module

 	
 minedatabase.reactions

 	module

 	
 	
 minedatabase.utils

 	module

 	
 module

 	minedatabase.compound_io

 	minedatabase.databases

 	minedatabase.filters

 	minedatabase.metabolomics

 	minedatabase.pickaxe

 	minedatabase.reactions

 	minedatabase.utils

 	mongo_ids_to_mine_ids() (in module minedatabase.utils)

 	ms2_search() (in module minedatabase.metabolomics)

 	ms_adduct_search() (in module minedatabase.metabolomics)

N

 	
 	neutralise_charges() (in module minedatabase.utils)

 	
 	next() (minedatabase.utils.Chunks method)

P

 	
 	Peak (class in minedatabase.metabolomics)

 	Pickaxe (class in minedatabase.pickaxe)

 	pickle_pickaxe() (minedatabase.pickaxe.Pickaxe method)

 	
 	postsanitize_smiles() (in module minedatabase.utils)

 	prevent_overwrite() (in module minedatabase.utils)

 	prune_network() (minedatabase.pickaxe.Pickaxe method)

 	prune_network_to_targets() (minedatabase.pickaxe.Pickaxe method)

R

 	
 	read_adduct_names() (in module minedatabase.metabolomics)

 	read_mgf() (in module minedatabase.metabolomics)

 	
 	read_msp() (in module minedatabase.metabolomics)

 	read_mzxml() (in module minedatabase.metabolomics)

S

 	
 	save_dotted_field() (in module minedatabase.utils)

 	save_to_mine() (minedatabase.pickaxe.Pickaxe method)

 	score_compounds() (in module minedatabase.metabolomics)

 	score_isomers() (minedatabase.metabolomics.Peak method)

 	
 	spectra_download() (in module minedatabase.metabolomics)

 	stoich (minedatabase.utils.StoichTuple property)

 	StoichTuple (class in minedatabase.utils)

 	Struct (class in minedatabase.metabolomics)

T

 	
 	transform_all() (minedatabase.pickaxe.Pickaxe method)

 	
 	transform_all_compounds_with_full() (in module minedatabase.reactions)

W

 	
 	write_compound_output_file() (minedatabase.pickaxe.Pickaxe method)

 	write_compounds_to_mine() (in module minedatabase.databases)

 	write_core_compounds() (in module minedatabase.databases)

 	
 	write_reaction_output_file() (minedatabase.pickaxe.Pickaxe method)

 	write_reactions_to_mine() (in module minedatabase.databases)

 	write_targets_to_mine() (in module minedatabase.databases)

 _images/full_rule.png
3 3
0 6
+ D +
' v 1)1\?/\7 q

[#6:1]-[#6:2](=[#8:3])-[#8:4].[#8:5]-[#6:6]-[#6:7]> > [#6:1]-[#6:2] (=[#8:3])-[#8:5]-[#6:6]-[#6:7].[#8:4]

_images/generic_rule.png
0]
CH3 +
H3CL - By H3C)LO/\CH3 o

(0)
L+ 0w, PR -

[#6:2]-(=[#8:1])-[#8:3].[#8:4]-[#6:5]>>[#6:2]-(=[#8:1])-[#8:4]-[#6:5].[#8:3]

_images/deesterification.png
Hp w0 — S

[46:11-(=[#8:2])-[48:3]-[#6:4] [#8:5]> > [#6:1]-(=[#8:2])-[48:5].[#8:3]-[#6:4]

_static/file.png

_static/minus.png

_static/plus.png

_static/figures/deesterification.png
Hp w0 — S

[46:11-(=[#8:2])-[48:3]-[#6:4] [#8:5]> > [#6:1]-(=[#8:2])-[48:5].[#8:3]-[#6:4]

nav.xhtml

 Table of Contents

 		
 Welcome to MINE-Database’s Documentation!

 		
 Installation

 		
 Running Pickaxe via Command Line

 		
 Command Line Interface Features

 		
 Examples

 		
 Generate and Save Data to Local directory

 		
 Generate and Save Data to a Mongo Database

 		
 Generate with Multiple Processes and Pruning Final Network

 		
 Running Pickaxe

 		
 Example Template

 		
 Run Output

 		
 Run Input

 		
 Input Compounds Example

 		
 Coreactant and Rule lists

 		
 Code snippet from Pickaxe_run.py

 		
 Core Pickaxe Options

 		
 Built-In Filters

 		
 General Filter Options

 		
 Tanimoto Threshold Filter

 		
 Tanimoto Sampling Filter

 		
 Metabolomics Filter

 		
 Generating Pickaxe Inputs

 		
 Compound Inputs

 		
 Compound Input

 		
 Target Input

 		
 Reaction Operator Inputs

 		
 Default Rules

 		
 Generating Custom Rules

 		
 Custom Filters

 		
 Overview

 		
 Requirements

 		
 Writing Custom Filters

 		
 Using Your Filter in a Pickaxe Run

 		
 (Optional) Writing Tests for Your Filter

 		
 Thermodynamic Calculations

 		
 Overview of Thermodynamics Module

 		
 eQuilibrator

 		
 Calculable Values

 		
 Calculating Thermodynamics of a Pickaxe Run

 		
 Set-up

 		
 Compound Value Calculations

 		
 API Reference

 		
 Compound I/O

 		
 Databases

 		
 Filters

 		
 Metabolomics

 		
 Pickaxe

 		
 Reactions

 		
 Rules

 		
 Thermodynamics

 		
 Utilities

 		
 Support

_static/figures/full_rule.png
3 3
0 6
+ D +
' v 1)1\?/\7 q

[#6:1]-[#6:2](=[#8:3])-[#8:4].[#8:5]-[#6:6]-[#6:7]> > [#6:1]-[#6:2] (=[#8:3])-[#8:5]-[#6:6]-[#6:7].[#8:4]

_static/figures/generic_rule.png
0]
CH3 +
H3CL - By H3C)LO/\CH3 o

(0)
L+ 0w, PR -

[#6:2]-(=[#8:1])-[#8:3].[#8:4]-[#6:5]>>[#6:2]-(=[#8:1])-[#8:4]-[#6:5].[#8:3]

